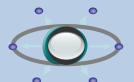
TAJ PALACE, NEW DELHI

"CHILLER PLANT OPTIMIZATION CASE STUDY"

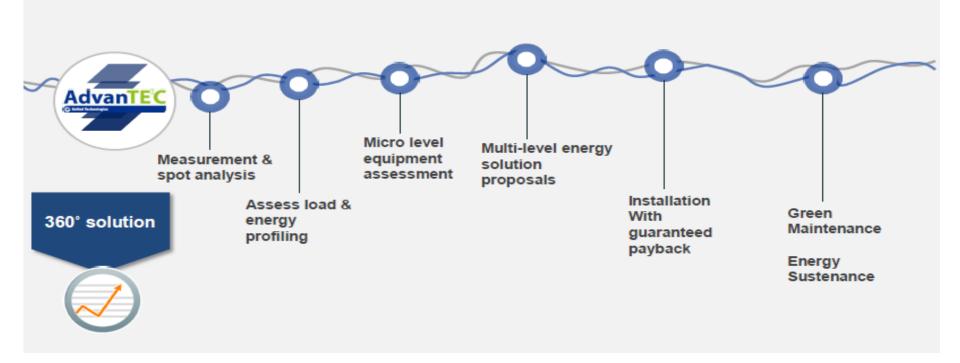


DRIVERS

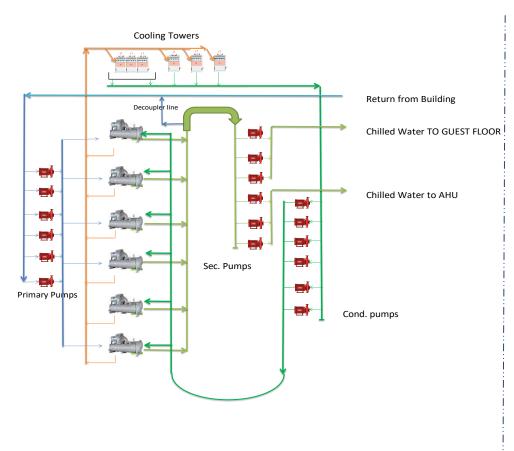
To Minimize operating cost, to retain business in competitive market.

Upgrade existing system with latest technologies and futuristic in design.

Best/optimum performance at plant system level to comply with global standards.



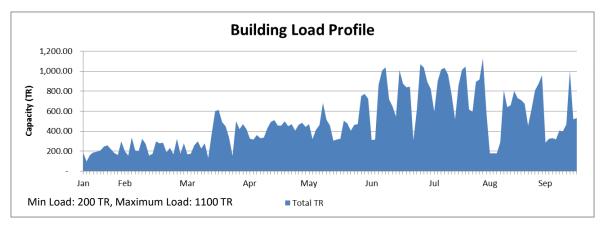
Environmental safety, government regulatory and reduction in carbon foot print.

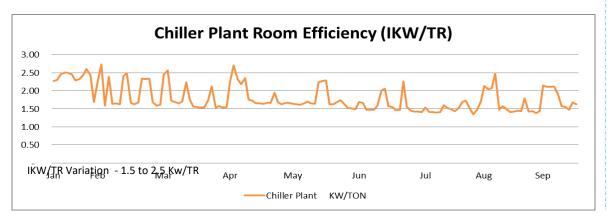

METHODOLOGY

Chiller Plant Audit

ORIGINAL STATE

Plant Room Configuration


BUILDING COVERED AREA: AIRCONDITIONED AREA:	54114.52 42102.59	Sq. Mtr. Sq. Mtr.
PLANT ROOM CAPACITY:	2139	TR
No of Chillers:		6 Nos (Installed in
Type of chillers: W/C Screw		Phased Manner) Multi compressor
Pumping System: Primary,		Dedicated
secondary side		2 zones on
point		Different duty
Cooling Tower: Tower		6 Nos Cooling
Controls and Monitoring:		Not Installed


Controls and Monitoring:

Not Installed.

AUDIT FINDINGS

Chiller Running Profile 20% 43% 6% 13% 18% ■ Chiller 1# ■ Chiller 2# ■ Chiller 3# ■ Chiller 4# ■ Chiller 5# **Individual Chiller** 1.50 Performance 1.17 1.1 1.00 1.00 IKW/TR 0.70 0.57 0.50

Chiller 1# Chiller 2# Chiller 3# Chiller 4# Chiller 5#

Actual Site Data

Curren Voltag Power Motor DBT WBT Temp. W.Out. CT1 CT2 CT3 t (4) e (V) Factor IXW (F) %881 (F) (F) Temp.(F) Approach

19.0 483 0.87 115 89.6 66% 77 89.6 86.72

Ang.

20.0 4/3 0.87 12.1 89.6 66%

12.45 Paharpur Make Goding Tower, 03 nos. 22 17 17 56.4 403 0.87 342 89.6

04

66%

0A Win

77 89.6 88.52

89.24 12.24

16

77 89.6

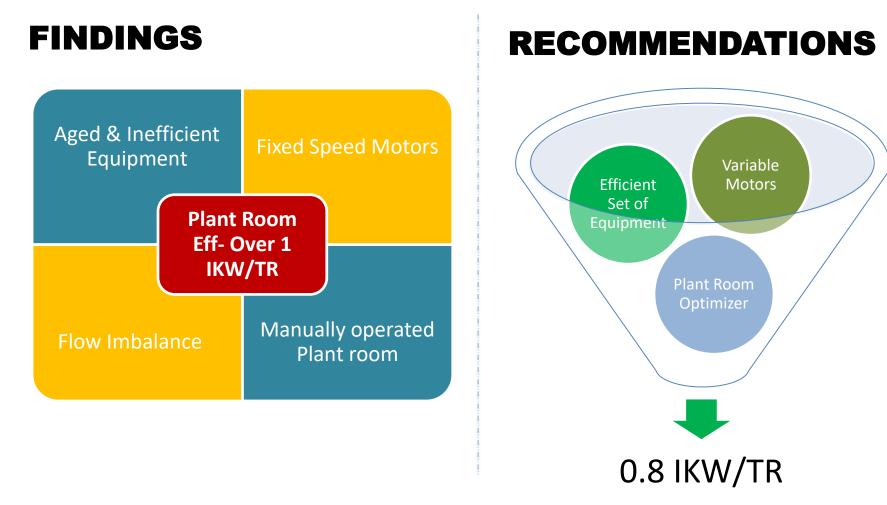
Chiller TagNo. Tim	Design Capacity (TR)	CHW.In CHW Tempt. (O Tem	Out CHW. Trupt.Diff L (C) (C)	CH.Water Row Rate	Actual Capacity (TR)	Current Vo	stage Pos	49. Wer tor	Input KN Chill	ar Equipme (KW)	6 Room		12%_	lant Power		ption		Energy con:	sumption percent	ad
1 10.4	5 300 5 300	13.7 8	7 6	54 75	324 385	306 341		0.87 100%	187 0 203 0	58 53								> Chiller:		5
3 10.4 4 10.4	5 300	13.3 11	7 22	54	88	225 170	396	0.87 64%	134 0 101 1	94								> P. Chille	d Water Pump:	5
5 10.4	5 300		3 2.4	58	167 1106 344	336		0.87 100%	200 1 827 198 0	361.	.2 1.07		20%			58%		> S. Chille	d Water Pump:	2
2 11:4	5 300 5 300 5 300	19.1 14	7 4.4	54 75 54	394	343	396 0	1857 100%	202 0	61			20%			5070			ser water pump	
4 11:4	5 300	13.5	2 <u>1.5</u> 6 2.4	49	88	176.2	413 0	1857 50% 1857 100%	107 1 209 1	22								> Cooling		5
	5 300	14.1	5.1	- 54		308	414 (844 189 0		.2 1.02		5%							
	5 300 5 300 5 300	14.6 10	9 39 3 43 3 2.4	75 54 58	278	366 331 315	396 0 396 0 414 0		215 0 194 0											
	5 300		3 2.4	- 54	1124			0.85 100%	195 1 792 195 0	361	2 1.02		Chiller	CHWP	CHWS CHWS	DW CT				
2 134	5 300 5 300	18.7 19	1 3.6 5 2.9	75	322 187	351 225	395 411	0.85 100%	204 0 136 0											
	5 300 5 300		1 15	49 58	163	172.5		0.85 50%	104 1 206 1	19 34		1	Plant Room a	verage efficie	ency:					
	5 300	14.3	5.3 8 3.5	- 54 75		347		0.87 100%	836 191 0 217 0		.2 1.10		> Ancillarie	-		-				
3 144	5 344	14.5 11	5 3	54	194	224	413	0.87 64%	139 0 106 1	72				ry chilled wa nsuming mo			ped with VF	D but Drives	are not in auto m	ode
5 14.4	5 300	11.8 9	1 2.7	58	188 1097	367	413	0.87 100%	228 1 882	22 361.	.2 1.12			-			rove the pl	ant room effic	iency.	
		_																		
onde	nser	Pum	<u>p Pe</u>	rforn	nan	<u>ce C</u>	<u>he</u>	ck tur	Carro n to the	-	ts		Cooling	Towe	r Perf	ormar	nce Cl	<u>neck</u>	turn to the ex	1

Time

Cooling Tower Make

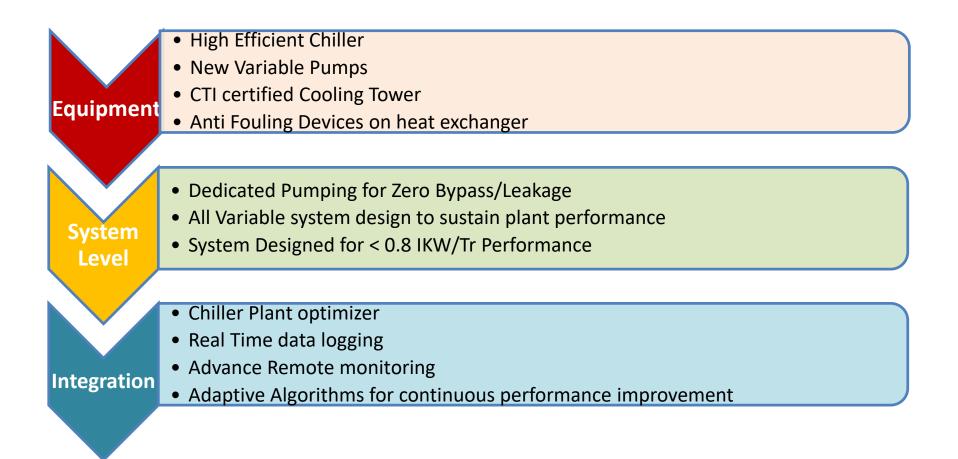
12:45 Paharpur Make Cooling Tower, 01 nos.

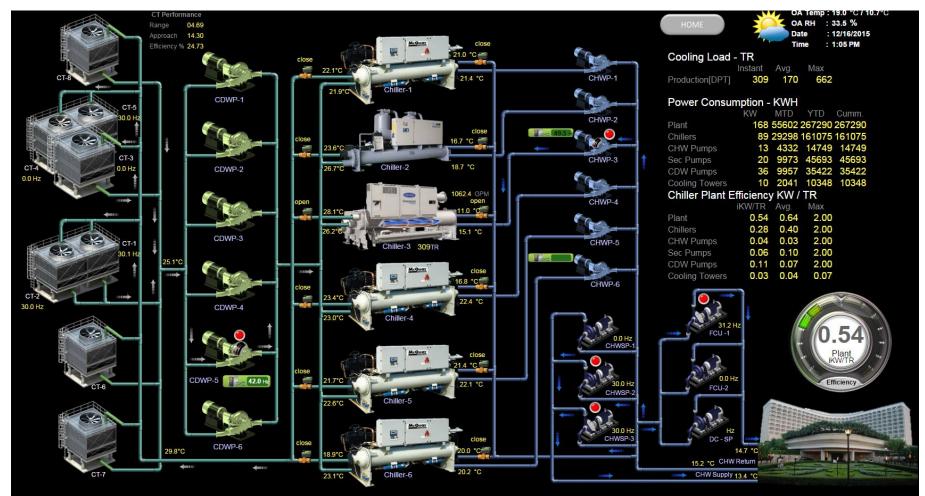
12:45 Paharpur Make Gooling Tower, 01 nos.


Date of Reading (Hrs)

24/19.2013 24/19.2013

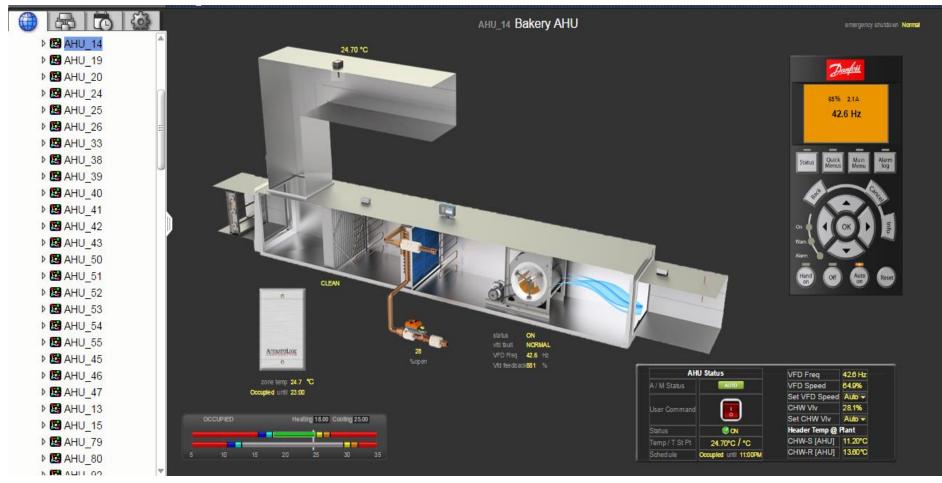
24.09.2013


		Condenser Water Pump														
	Time				Pump Name Plate Data				Actual Site Data							
Date of Reading	(Hrs)	Pump.No.	Pump Make	Pump Model	(Q M	d		Motor	Press.	Press.	Head	(a.n./	Curren	Voltag	Power	Motor
	(nisj				/Hr)	(m)	RPM	KW	(psig)	(psig)	(M)	hr.)	t (A)	e (V)	Factor	IKW
29/09/2013	13:00	1	Grundfoss	NK 150-315	279	29	1450	30.0			0.0		47.7	403	0.87	29.0
29/09/2013	13:00	2	Grundfoss	NK 150-315	279	29	1450	30.0					47.7	403	0.87	29.0
29/09/2013	13:00	3	Grundfoss	NK 150-315	279	29	1450	30.0					41.5	403	0.87	25.3
29/09/2013	13:00	4	Grundfoss	NK 150-315	279	29	1450	30.0			0.0		47	403	0.87	28.5
29/09/2013	13:00	5	Grundfoss						0	nder BD /	Pump No	ot availat	de			
29/09/2013	13:00	6	Grundfoss	NK 150-315	279	29	1450	30.0			0.0		46.4	403	0.87	28.2
																14

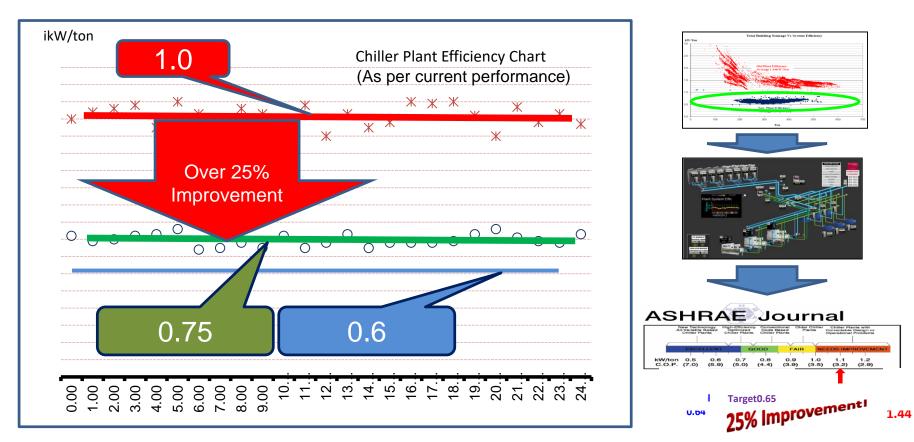


INTERVENTIONS UNDERTAKEN

SNAPSHOT OF PLANT OPTIMIZER DASHBOARD



SNAPSHOT OF PLANT OPTIMIZER DASHBOARD



SNAPSHOT OF PLANT OPTIMIZER DASHBOARD

ENERGY SAVINGS ACHIEVED

13

M&V - ENERGY SAVINGS

MONTH	PO	WER CONSU	MPTION - KV	NН
	2014	2015 - 16	2016 - 17	2017 - 18
JUL	595,112	399,633	468,819	493,815
AUG	614,831	422,286	450,106	485,404
SEP	485,122	366,677	408,369	405,936
ОСТ	353 501	267 137	182,230	275,466
NOV	2 7%	Savings at B	uilding Leve	39,851
DEC	1	Consum		91,457
JAN	144,293	105,271		73,112
FEB	132,784	155,250	98,788	120,861
MAR	256,133	171,517	181,192	183,414
APR	314,301	256,183	290,185	266,598
MAY	456,617	367,412	350,736	349,545
JUN	522,424	438,822	416,484	423,267
	4232653	3206698	3219138	3308726
	SAVINGS	24%	24%	25%

MONTH	POWER CO	ONSUMPTION	- KWH/TR
WONTH	2015-16	2016-17	2017-18
JUL	0.76	0.73	0.68
AUG	0.73	0.72	0.68
SEP	0.72	0.74	0.68
ОСТ	0.74	0.72	0.67
NOV	0.77	0.76	0.68
DEC	0.84	0.95	0.74
JAN	1.12	1.07	0.77
FEB	0.74	0.74	0.71
MAR	0.66	0.70	0.62
APR	0.67	0.68	0.65
ΜΑΥ	0.73	0.68	0.67
JUN	0.88	0.68	0.68
AVERGAGE	0.78	0.76	0.69

ASHRAE Journal

	New Techn II-Variable Chiller Pla	Speed	High-Efficienc Optimized Chiller Plants	Code E	Based	Plants	r Chiller Plants with Correctable Design or Operational Problems			
	EXCE	LLENT	G	000	FA		EEDS IMP	ROVEMENT		
kW/ton C.O.P.		0.6 (5.9)	0.7) (5.0)	0.8 (4.4)	0.9 (3.9)	1.0 (3.5)	1.1 (3.2)	1.2 (2.9)		

National Energy Conservation Award

Energy Conservation Initiatives:

1. Building HVAC system optimization & Revamp

Till 2014, 52-58% of total electrical consumption was from HVAC and in HVAC also 40-45% was contributed by Chillers/Heat machines and its connected accessories like pumps and cooling tower. The Carrier's AdvanTE3C team carried out a detailed Energy Assessment of the entire HVAC system which included studying the building load and energy pattern. On the basis of assessment, new Carrier Heat machine 23XRV 520TR, Plant System Manager with advance controls and other plant room equipment's were introduced into system. AdvanTE3C team did the entire project execution and handed over the project on July 1st, 2015. It resulted in improving the plant room efficiency by 26%, providing a saving in excess of **1000,000KWH** in a span of 9 months. By the end of financial year 2015-16, hotel was able to provide **90 lacs** of monetary saving through electrical unit's consumption reduction. In spite of unavailability of major saving months i.e. April, May, June where HVAC runs on 100% load, 90% of proposed savings were achieved. The system is operated in fully automated mode using the Carrier advance Plant Room System optimization using multiple strategies such as Cooling tower staging, Cooling tower fan speed control, Condenser water pump speed control, secondary water pumps speed control, Chiller staging, chilled water reset etc. The controls system also does the Energy diagnostic of the plant room to identify areas of potential energy waste and provide relevant information on waste avoidance and correction. There was major reduction of electricity generation through Diesel Generator, where 23000 ltrs of HSD consumption was less than year 2014-15.

Thank You

Contact – feroz.zaidi@carrier.com; yogesh.ahuja@carrier.com