

Sustainable Urban Water Management (SUWM)

Date: Sept 28 2019

CONTENTS

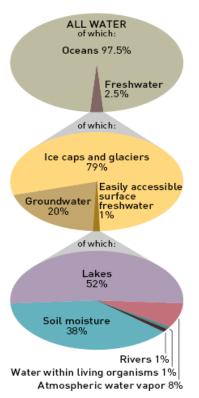
A. Water Management – An Overview

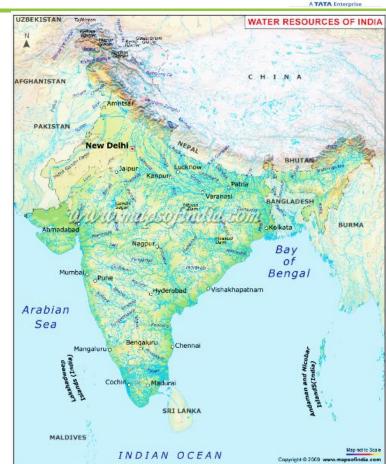
- About Water
- Historical background
- Need for Water Management
- SDGs and Framework

B. Sustainable Urban Water Management

- Urban Water Cycle
- Vision Statement
- Issues & Challenges
- Key Components
- Source Management
- Demand Management
- Water Balance

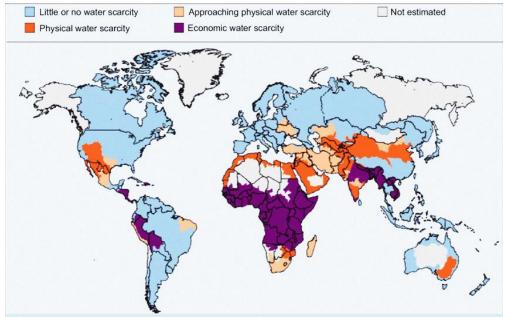
ABOUT WATER



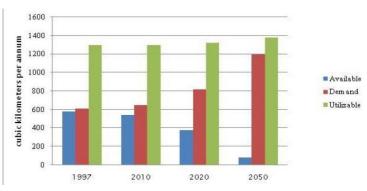

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms.

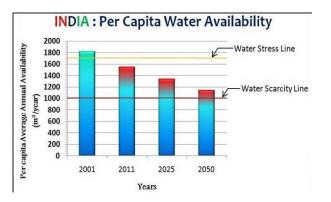
Ayurveda, The Indian traditional system of medicine or "living in tune with nature" recognizes five elements, Space, Air, Fire, <u>Water</u> and Earth, as the building blocks of all matter.

WHERE THE WATER IS



WATER STATUS


Global Facts



- No New water- we drink the same water that the Dinosaurs had. 85 million are added every year to share same water.
- Last century: World Population has tripled & Water demand has increased by 6 times.
- 2045 2/3rd population will face water scarcity (50% will face acute shortage)

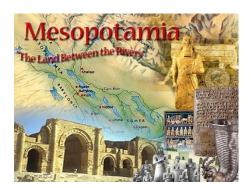
 (UNESCO & WWC)

India Water Status

^{*} Actual requirement as per norm (135LPCD = ~ 50 cum/yr/ person

HISTORICAL BACKGROUND

Origin of Life and tool for prosperity


Egyptian Civilization

Mayan Civilization

Indus Valley Civilization

Mesopotamia Civilization

Roman Civilization

Babylonia Civilization

MODERN CITIES

London Venice Paris

Agra Sabarmati Haridwar

WATER MANAGEMENT --- WHY?

Deficit

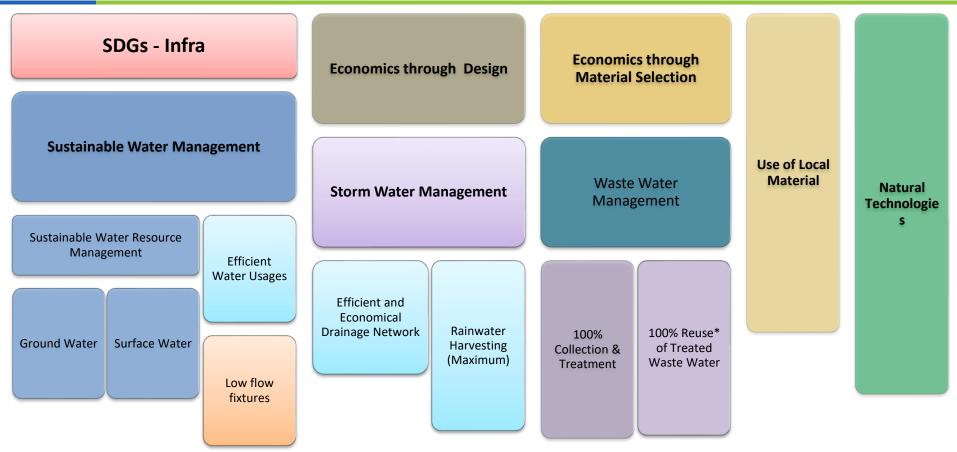
Excess

WATER MANAGEMENT --- WHY

Good System

Bad System

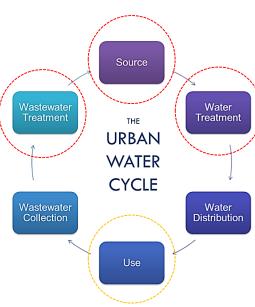
SUSTAINABLE G ALS

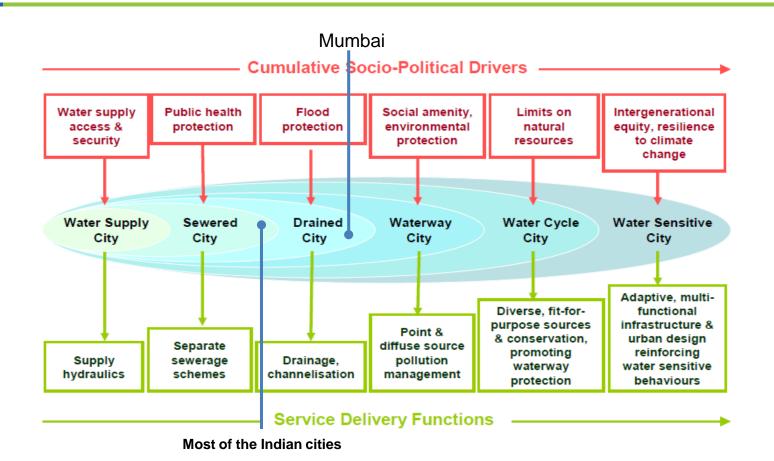


SUSTAINABILITY FRAMEWORK

Sustainable Urban Water Management

SUWM


SUSTAINABLE URBAN WATER MANAGEMENT


URBAN WATER CYCLE

Key Components

Sustainable Urban Water Management

Influences:

- Hydro geology
- Geology
- Topography
- Climate
- Local and regional drainage pattern
- · Water bodies

Stake Holders:

- Politicians
- Citi Officials
- Community
- Designers
- Urban Planners
- Industry
- Financers
- Communication
- Social Organisation
- Enforcement agencies

Considerations:

- Energy
- Maintenance
- Capital Cost
- Urban Growth Pattern and projections
- Urban Planning

Tools:

- Policy
- Design
- Planning
- Technology
- ICT/IOT
- Engagement & Capacity development

LINKS between Water and Other Sectors of Urban Planning

Land Use Planning

- · Changes in land use changes local Hydrology and hydraulics
- · Water Scarcity and flood restrict land development

Transport

- · Increased surface runoff and diffused pollution from roads
- · Damage to transport infra caused by flood

Public Spaces

- · Increased water demand for irrigation
- · Flooding and draught damages plants and playing fields

Economic Development

- · Increased water demand and increased pollution load from WW disposal
- · Water Scarcity restricts economic development

Housing

- · Additional water supply, water infra, disposal infra is required
- Flooding of property

Health

- Watercourse pollution · Water borne & parasite
- disease caused by contaminated and stagnant water

Waste

- Pollution of water resources & blocking of drainage
- · Flooding of waste collection sites

Urban Agriculture

Urban

Water

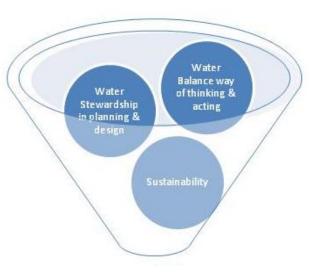
Cycle

- · Runoff containing fertilizer/ pesticides pollutes waterbodies
- Water Scarcity restrict production of local food

Energy

- · Water & WW treatment. distribution required assured supply of electricity
- Water resources used for energy generation

SUWM - Vision Statement


"Driving the creation of sustainable communities by developing and delivering India Specific Solutions".

Guiding philosophy

- Self sufficient communities
- Balancing Sustainability and Affordability
- Integrating traditional solutions with modern techniques
- Thought leadership and Innovative solutions going beyond certification
- Encouraging local/small scale innovators
- Advocating sustainability & spreading education and awareness

Water Centric Planning

- The development is planned around v with following goals:
 - Confirmed Availability
 - Efficient Use
 - Prudent Storm Water Management
 - Sustainable water balance
 - Minimization of cost

- A dynamic process with water stewardship that adapts to changing conditions and balances competing uses of water through efficient allocation
- Addresses social values, cost effectiveness and environmental benefits leading to better health, safety community comfort & goodwill.

Issues & Challenges

Issues

- Higher concentration of population in established urban areas leading to demands for new townships
- Diminishing water availability
- Unpredictable rainfall pattern
- · Deteriorating water quality
- More population to share same resources
- Increasing infrastructure cost (specially for townships)
- Functionality of infrastructure system
- Increased expectation level of end user for quality and hassle free life
- Thumb rule based designs practices

Challenges

- Providing functional infrastructure and assured water for the New Townships at affordable cost
- Increased expectation level of end user for quality and hassle free life

Water Tariff

Consumer type	MCGM	MJP
Residential customers	Rs. 3.50	Rs. 10.50
Slum dwellers (MCGM) / Rural areas (MJP)	Rs. 2.25	Rs. 5.25
Hospitals, maternity homes (MCGM), Schools, Govt. & semi-Govt. offices, hospitals and charitable trusts (MJP)	Rs. 10.50	Rs. 19.65
Commercial establishments and BEST	Rs. 18.00	
Bulk consumers e.g. Five Star Hotels, Railways, BARC, RWITC	Rs. 38.00	
Special customers: Ordnance factories at Ozar & Ambazari, & Tarapur plant		Rs. 18.70

Municipal Supply: 5 Rs. /KL

Tanker Water: 75 Rs./ KL

Treated Water: 40 Rs./ KL

Bottled Water: 10,000 Rs./KL

Increasing tanker water supply rates

Rs. 5007001600still increasing!!!!!

What will be the limit??

SUWM – Key Components

Approach

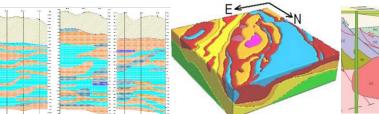
- Holistic development and management of water resources
- Comprehensively planning:
 - consider all potential water use allocations;
 - exploit multiple use options;
 - synergies between different systems (water & energy; water &waste)
 - related land and ecological aspects
 - Swift and safe disposal
- Consistent with standards and recognize economic efficiency, environmental quality and social objectives.
- Ease of implementation
- Self reliance and ensures future water security

Key Objectives

- Future water security
- Grid independent
- Minimization of fresh water consumption
- Decentralized infrastructure leading to cost optimization

Key Sectors

Key Themes


Water Budgeting and Balancing	Scientific investigations	>	Rain-water harvesting	
Waste water recycling	Storm water management	$\overline{}$	Wastewater reuse/disposal	

Requires the participation of all stakeholders (developers, owners, occupants, residents & facility managers)

SUWM – Source Management

Source Management

Groundwater

Micro Catchment Area Analysis

Hydrological Investigations

Geological Investigation

Sub Surface Profiling

Establishment of Sustainable Yield

Quality Assessment

Sustainable Resource Use Planning

Surface Water

Resource Mapping

Rainfall Data Analysis

Seepage Analysis

Quantity Assessment

Quality Assessment

Sustainable Resource
Use Planning

Treated Waste Water

Source identification

Volume calculations

Quality analysis

Identification of uses

Collection strategies

Treatment Strategies

Reuse & distribution Strategies

Disposal strategies

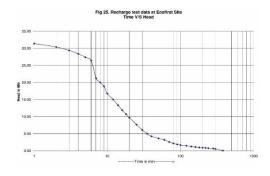
O& M manual and guidelines

Sustainable Water source with adequate quantity & quality to meet the peak requirements

Ensured per capita per day supply to meet the primary and secondary water needs

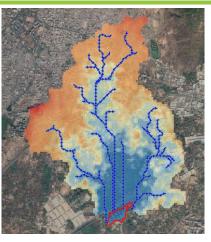
Sufficient storage and conveyance system with minimal energy and transmission losses

Efficient storm water drainage network to bypass the flood peaks


Effective rainwater harvesting system to capture all rainwater surface runoff

Efficient waste water collection, treatment and disposal system complying environmental standards

SUWM – Storm Water Management



Storm Water Management

Methodology

- · Mapping of catchment area
- Hydrological Analysis
- Flood peak calculations
- Review of existing profile/ drainage system
- · Generate computer model
- · Design drainage network system
- Optimize sizing
- Maximize harvesting
- Best Management Practices
- Encourage use of Non Structural Solutions

Outcome

- Safe & Hassle free (No flooding)
- Safe Disposal
- Maximum use
- Cost Effective Solution

SUWM – Rainwater Harvesting

Rain Water Harvesting

Methodology

- Subsoil investigations
- Groundwater recharge potential calculations
- Marking drainage area
- **Hydrological Analysis**
- Peak rainfall calculations
- Efficient collection system design
- Appropriate filtration system design
- Design of adequate and efficient recharge system
- Design of optimum storage system for reuse
- Recommending measurement mechanism to monitor water harvested.
- Operation and maintenance guidelines

How RWH can be done?

- Structural
- Non Structural
- Below ground
- Over ground
- Before or after it touches the ground
- Storage
- recharge

Structural

- Storm water Ponds (retention/ Detention Ponds)
- Infiltration Basins
- Infiltration Filters
- Filtering Systems
- **Open Channel Practices**

Non structural

- Natural Area Conservation
- **Rooftop Disconnection**
- Green Roof
- Rain Gardens
- Non-Rooftop Disconnection
- Sheet Flow to Buffers
- Open Grass Channels
- Storm water diversion Wetlands

SUWM – Waste Water Management

Waste Water Manage ment

Methodology

- Mapping of source generating waste water
- Waste water volume & fluctuations calculation
- Surface area mapping
- Subsoil investigations
- Selection of most appropriate technology for wastewater treatment
- Efficient collection system design
- Design of adequate and efficient treatment system
- Identification of optimum treated water use
- Setting up quality standards for waste water treatment system
- Enforcing mechanism to the monitor treated waste water quality standards
- Prepare operation and maintenance guidelines and User manuals

KEY AGENCIES AND ORGANISATIONS/ DEPARTMENTS

REGULATORY FRAMEWORK

- The **Bureau of Indian Standards (BIS)** is the national Standards Body of India working under the aegis of Ministry of Consumer Affairs, Food & Public Distribution, Government of India.
- National Building Code of India, 2016 It is a comprehensive building code for regulating the building construction activities across the country which was first published in 1970.
- Indian Standards Bill, 2015
- National Water Policy, 2012

WATER RESOURCES

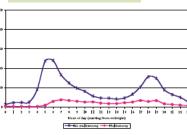
- Central Water Commission
- Central Ground Water Board
- State Ground Water Board
- Irrigation Department/ Water Resources Department
- Public Health Engineering Department
- Local bodies/ Gram Panchayat*

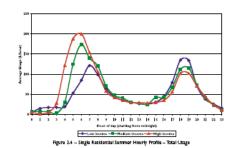
KEY AGENCIES AND ORGANISATIONS/ DEPARTMENTS

DRINKING WATER STANDARDS

- EU Directives relating to the quality of water intended for human consumption (80/778/EEC) and Council Directive (98/83/EC).
- USEPA standard National Primary Drinking Water Standard. (EPA 816-F-02-013 dated July, 2002).
- WHO Guidelines for Drinking Water Quality. (3rd Edition Vol. 1 Recommendations, 2008).
- Manual on Water Supply and Treatment, (third edition revised and updated May 1999), Ministry of Urban Development,
 New Delhi.
- Bureau of Indian Standards (BIS): DRINKING WATER SPECIFICATION (IS 10500 : 2012)

DISPOSAL WATER STANDARDS


- Central Public Health & Environmental Engineering Organization (CPHEEO), Ministry of Housing and Urban Affairs, Government of India
- Ministry of Environment, Forest and Climate Change, Government of India (MOEF)
- Central Pollution control Board (CPCP)
- State Pollution Control Board (SPCB)
- The National Green Tribunal (NGT)


SUWM – Demand Management

Demand Pattern

INDIVIDUAL

Primary

Drinking

Secondary

- Cooking
- Bathing
- Washing
- Flushing
- Gardening
- Cleaning
- Cooling
- Lifestyle

COMMUNITY

Common Facilities

- Community center
- Gardens
- **Plantations**

Cultural Events

Visitors/non residents

TOWNSHIP

Other Requirement

Institutional

- Educational
- Hospitals/clinics

Commercial

- Market
- commercial
- Offices

Recreational

Club House

Common green, trees Miscellaneous Demand

Management

Planning Tools

Design Tools

Policy Tools

Equipment Tools

Information & Communication

Balancing

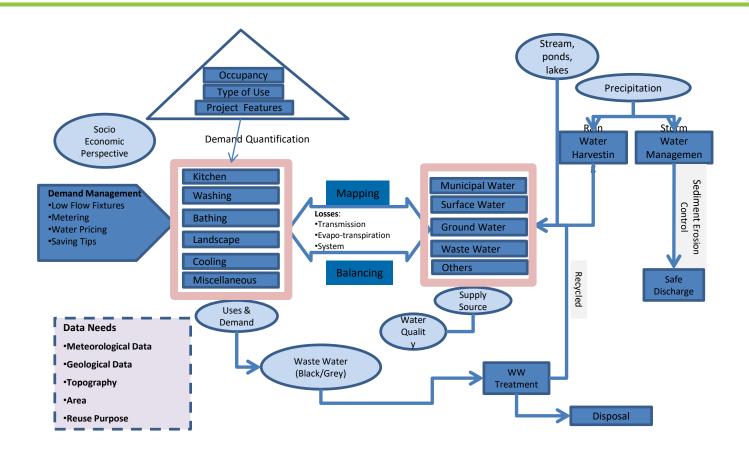
Beneficial Use

Source Matching

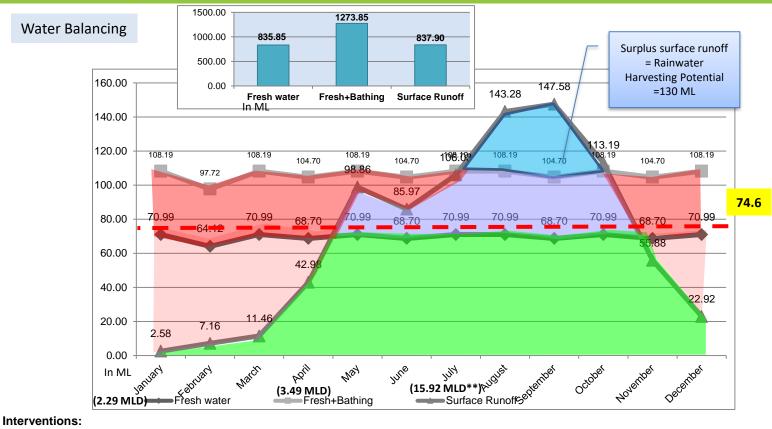
Quantity Realization

Right quality

SUWM – Demand Optimisation



Based on flow rates of various low flow (efficient) Fixtures)


SUWM – Flow Diagram

SUWM – Water Balance

Key Interventions:

- •100% rooftop rainwater harvesting by storage
- 32 ML storage capacity in water bodies

Preservation

Conservation

Every drop of water

