New Trend In Pump efficiency

Story of an Engineer....
Energy Saving Concepts…

1. Correct Sizing of Pipes, Bends & Valves
2. Power Factor Improvement
3. Changes suitable to variable head and flow
4. VFD for process optimization
5. Selecting right size & high efficiency motors
6. Right configuration of system
7. Periodic Overhaul

What about PUMP ???
We have derived H, Q, Suction pressure, working pressure & RPM.

What else is left?

Pump efficiency !!

Study

- $\frac{1}{5}$th of total power generated in the world is consumed by Pumps & Pumping Systems i.e. 20% of 21000 Tera Watt Hour (Source: enerdata.net 2010 Values) power produced.

- As per HIS pump efficiency reduces by 1.5% to 2% every year

Pump has a Life Cycle Cost in it...
Why does efficiency of pump decrease???

findings

• Chemical degradation – Corrosion

 Shaft deflection
 - Mechanically erodes diametric clearances
 - Reduction in mechanical seal life and bearing life
 - Increases pump vibration owing to residual unbalance

 Due to mechanical wear & tear
 - Wear ring clearance increases

 1.5 times of standard clearance = reduction in efficiency by 1.5 to 2.3%
 2 times of standard clearance = reduction in efficiency by 2 to 6%

For standard pump wear ring clearance increase by least 2 times in run of 8000 hours.
Finding...elements of Life Cycle Cost

Example

Let us consider a pump requiring 235 kW motor to drive. Energy cost will be

- 1,410 / hour
- 31,020/ day (22 hrs of operation)
- Mn 0.93 / Month (30 days)
- Mn 11 approx. / Year.
- Mn 120 approx. / for 10 years life

The initial cost of the pump motor equipment is about Mn 1.1
Only 1% of the running cost over its life period
Contribution of Various Elements

- ENERGY COST: 85%
- MAINTENANCE COST: 10%
- INITIAL COST: 2%
- OTHER COSTS: 3%

Majority of buyers negotiate hard on this 1% of the Total cost.

Need to develop new design with

- Reduce chemical degradation
- Improve efficiency
- Reduce mechanical degradation
- Reduce down time
- Sustain Efficiency
Corrosion Restricted to 10+ years

Maintenance downtime reduces by 50%

Efficiency Improves by 3% to 5%+

Efficiency reduction is 0.25% every Year.
31-Oct-13

This is a proprietary document of Kirloskar Brothers Limited

Pumps put in operation...

POWER SAVING CALCULATION

<table>
<thead>
<tr>
<th>No of Years</th>
<th>Motor rating KW</th>
<th>Motor efficiency %</th>
<th>Overall efficiency %</th>
<th>Power consumed Power saving Pumping cost Power saving & Pumping cost due to Corrocoating</th>
<th>Total electiricity Cost In 10 Years for 1 pump</th>
<th>Total electiricity Cost In 10 Years for 3 pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>86.5</td>
<td>82.6</td>
<td>235.28</td>
<td>1,885,497</td>
<td>5,400,476</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>89.7</td>
<td>85.4</td>
<td>237.72</td>
<td>1,819,422</td>
<td>5,158,266</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>92.1</td>
<td>88.3</td>
<td>242.01</td>
<td>1,823,554</td>
<td>5,197,832</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>94.4</td>
<td>90.6</td>
<td>247.15</td>
<td>1,828,554</td>
<td>5,237,384</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>96.6</td>
<td>92.9</td>
<td>252.92</td>
<td>1,833,136</td>
<td>5,277,820</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>98.8</td>
<td>95.2</td>
<td>259.44</td>
<td>1,837,731</td>
<td>5,318,244</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>99.4</td>
<td>95.8</td>
<td>264.98</td>
<td>1,841,583</td>
<td>5,358,660</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>99.9</td>
<td>96.3</td>
<td>270.51</td>
<td>1,845,337</td>
<td>5,399,076</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>100.0</td>
<td>96.8</td>
<td>276.02</td>
<td>1,848,954</td>
<td>5,439,482</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>100.0</td>
<td>97.3</td>
<td>281.54</td>
<td>1,852,537</td>
<td>5,479,888</td>
</tr>
</tbody>
</table>

Result is...

<table>
<thead>
<tr>
<th>REGULAR</th>
<th>LLC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEP Head</td>
<td>meter</td>
<td>37</td>
</tr>
<tr>
<td>BEP Discharge</td>
<td>m³/Hr</td>
<td>1925</td>
</tr>
<tr>
<td>Pump Efficiency</td>
<td>%</td>
<td>86.5</td>
</tr>
<tr>
<td>Motor Efficiency</td>
<td>%</td>
<td>95.5</td>
</tr>
<tr>
<td>Overall Efficiency</td>
<td>%</td>
<td>82.6</td>
</tr>
<tr>
<td>Motor Input</td>
<td>kw</td>
<td>235</td>
</tr>
</tbody>
</table>

Total Energy Consumption In One Hour kw-hr 235 227 kw-hr

Total Energy Consumption In 10 Years kw-hr 20,200,957 18,400,799 1,800,158

Total electricity Cost In 10 Years for 1 pump INR 121,205,742 110,404,791 10,800,951

Total electricity Cost In 10 Years for 3 pump INR 363,617,227 331,214,374 32,402,853

31-Oct-13

This is a proprietary document of Kirloskar Brothers Limited
Environment Effect

<table>
<thead>
<tr>
<th>Years</th>
<th>Power Consumption kWh</th>
<th>CO2 Tons</th>
<th>CO2 Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular LLC</td>
<td>Regular LLC</td>
<td>CO2 Reduction</td>
</tr>
<tr>
<td></td>
<td>Power Consumption kW</td>
<td>Savings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Year</td>
<td>20,68,865</td>
<td>19,95,957</td>
<td>72,907</td>
</tr>
<tr>
<td>2nd Year</td>
<td>21,00,370</td>
<td>20,00,960</td>
<td>99,410</td>
</tr>
<tr>
<td>3rd Year</td>
<td>21,32,355</td>
<td>20,05,975</td>
<td>1,26,381</td>
</tr>
<tr>
<td>4th Year</td>
<td>21,64,828</td>
<td>20,11,002</td>
<td>1,53,826</td>
</tr>
<tr>
<td>5th Year</td>
<td>21,97,795</td>
<td>20,16,042</td>
<td>1,81,753</td>
</tr>
<tr>
<td>6th Year</td>
<td>22,31,264</td>
<td>20,21,095</td>
<td>2,10,169</td>
</tr>
<tr>
<td>7th Year</td>
<td>22,65,242</td>
<td>20,26,160</td>
<td>2,39,082</td>
</tr>
<tr>
<td>8th Year</td>
<td>22,99,738</td>
<td>20,31,238</td>
<td>2,68,500</td>
</tr>
<tr>
<td>9th Year</td>
<td>23,34,760</td>
<td>20,36,329</td>
<td>2,98,431</td>
</tr>
<tr>
<td>10th Year</td>
<td>23,70,315</td>
<td>20,41,433</td>
<td>3,28,882</td>
</tr>
<tr>
<td>IN TEN YEARS</td>
<td>2,21,65,532</td>
<td>2,01,86,193</td>
<td>19,79,340</td>
</tr>
</tbody>
</table>

Benefits of Lowest Life Cycle Cost™

- Sustainable Efficiency
- Supreme Longevity
- Reduced Downtime
- Ease of Maintenance
- Energy Savings
Conclusion

ROI of 9 months to One year

"THIS IS A CRADLE TO GRAVE SOLUTION"
With Minimum cost to Maximum Benefits
New Trend In Pump efficiency

.....Sustainable Efficiency

HIS ...about efficiency drop in a pump..

Figure 1.78B — Estimated efficiency decrease due to increased wear ring clearance (US Units)
Analysis of Pump Power Consumption Pattern

Table: Pump Power Consumption Pattern

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>No. of years</th>
<th>Over all Efficiency</th>
<th>Pumping cost (in Rs.)</th>
<th>Power tariff Considered: Rs 6/KWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per Day</td>
<td>Per Year (Mn.)</td>
</tr>
<tr>
<td>1</td>
<td>1st year</td>
<td>82.60</td>
<td>30,994</td>
<td>11.16</td>
</tr>
<tr>
<td>2</td>
<td>2nd year</td>
<td>81.36</td>
<td>31,466</td>
<td>11.33</td>
</tr>
<tr>
<td>3</td>
<td>3rd year</td>
<td>80.14</td>
<td>31,945</td>
<td>11.50</td>
</tr>
<tr>
<td>4</td>
<td>4th year</td>
<td>78.94</td>
<td>32,431</td>
<td>11.68</td>
</tr>
<tr>
<td>5</td>
<td>5th year</td>
<td>77.75</td>
<td>32,925</td>
<td>11.85</td>
</tr>
<tr>
<td>6</td>
<td>6th year</td>
<td>76.59</td>
<td>33,427</td>
<td>12.03</td>
</tr>
<tr>
<td>7</td>
<td>7th year</td>
<td>75.44</td>
<td>33,936</td>
<td>12.22</td>
</tr>
<tr>
<td>8</td>
<td>8th year</td>
<td>74.31</td>
<td>34,452</td>
<td>12.40</td>
</tr>
<tr>
<td>9</td>
<td>9th year</td>
<td>73.19</td>
<td>34,977</td>
<td>12.59</td>
</tr>
<tr>
<td>10</td>
<td>10th year</td>
<td>72.10</td>
<td>35,510</td>
<td>12.78</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Reducing chemical degradation

Surface roughness comparison

Cast iron Ra 18.8 µm

Mildly Polished Steel Ra 5.0 µm

Fluglide 'E' Ra 0.4 µm

Fluglide Ra 0.08 µm

Layers of glass flakes

Tortuous path for corrosive ion

Coating

Glass flake fluiglide coating
Coating on Internal parts...

Features of Coating ...

- Anti Corrosion
- Anti- Abrasion
- Anti-Galvanic
- Hydrophobic
- Improves Efficiency
Mechanical Degradation.... Shaft Deflection

Low L^2/D^4 ratio ensures minimum deflection and long bearing life.

Mechanical Degradation.... Wear Rings

Hard Metallic serrated wearing
Precision casting in **austenitic stainless steel as standard**. Axially hydraulic balance of double suction design improves efficiency & Bearing Life.

Reducing mechanical degradation and down time

- Externally removable bearing housing
- Universal seal chamber
- API type double row thrust bearing assembly
Reducing down time

Mechanical Seal Replacement
Horizontal Split Case Pumps

- Remove guard
- Remove spacer
- Remove bearing retaining nut
- Remove bearings and remove mechanical seal
- Remove pump coupling
- Remove bearing housing

Assemble for use